Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
2.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
3.
Front Cardiovasc Med ; 9: 813215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350534

RESUMO

Objective: Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results: Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1ß level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion: We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.

4.
Pflugers Arch ; 473(3): 533-546, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580817

RESUMO

The cation channel transient receptor potential melastatin 4 (TRPM4) is a calcium-activated non-selective cation channel and acts in cardiomyocytes as a negative modulator of the L-type Ca2+ influx. Global deletion of TRPM4 in the mouse led to increased cardiac contractility under ß-adrenergic stimulation. Consequently, cardiomyocyte-specific inactivation of the TRPM4 function appears to be a promising strategy to improve cardiac contractility in heart failure patients. The aim of this study was to develop a gene therapy approach in mice that specifically silences the expression of TRPM4 in cardiomyocytes. First, short hairpin RNAmiR30 (shRNAmiR30) sequences against the TRPM4 mRNA were screened in vitro using lentiviral transduction for a stable expression of the shRNA cassettes. Western blot analysis identified three efficient shRNAmiR30 sequences out of six, which reduced the endogenous TRPM4 protein level by up to 90 ± 6%. Subsequently, the most efficient shRNAmiR30 sequences were delivered into cardiomyocytes of adult mice using adeno-associated virus serotype 9 (AAV9)-mediated gene transfer. Initially, the AAV9 vector particles were administered via the lateral tail vein, which resulted in a downregulation of TRPM4 by 46 ± 2%. Next, various optimization steps were carried out to improve knockdown efficiency in vivo. First, the design of the expression cassette was streamlined for integration in a self-complementary AAV vector backbone for a faster expression. Compared to the application via the lateral tail vein, intravenous application via the retro-orbital sinus has the advantage that the vector solution reaches the heart directly and in a high concentration, and eventually a TRPM4 knockdown efficiency of 90 ± 7% in the heart was accomplished by this approach. By optimization of the shRNAmiR30 constructs and expression cassette as well as the route of AAV9 vector application, a 90% reduction of TRPM4 expression was achieved in the adult mouse heart. In the future, AAV9-RNAi-mediated inactivation of TRPM4 could be a promising strategy to increase cardiac contractility in preclinical animal models of acute and chronic forms of cardiac contractile failure.


Assuntos
Técnicas de Transferência de Genes , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM , Animais , Dependovirus , Vetores Genéticos , Masculino , Camundongos , Interferência de RNA , RNA Interferente Pequeno , Transdução Genética/métodos
5.
Front Cell Dev Biol ; 8: 496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676502

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that evokes calcium release from intracellular organelles by the engagement of calcium release channels, including members of the Transient Receptor Potential (TRP) family, such as TRPML1, the (structurally) related Two Pore Channel type 1 (TPC1) and TPC2 channels as well as Ryanodine Receptors type 1 (RYR1; Guse, 2012). NAADP evokes calcium release from acidic calcium stores of many cell types (Guse, 2012), and NAADP-sensitive Ca2+ stores have been described in hippocampal neurons of the rat (Bak et al., 1999; McGuinness et al., 2007). Glutamate triggers Ca2+-mediated neuronal excitotoxicity in inflammation-induced neurodegenerative pathologies such as Multiple Sclerosis (MS; Friese et al., 2014), and when applied extracellularly to neurons glutamate can elevate NAADP levels in these cells. Accordingly, glutamate-evoked Ca2+ signals from intracellular organelles were inhibited by preventing organelle acidification (Pandey et al., 2009). Analysis of reported RNA sequencing experiments of cultured hippocampal neurons revealed the abundance of Mcoln1 (encoding TRPML1), Tpcn1, and Tpcn2 (encoding TPC1 and TPC2, respectively) as potential NAADP target channels in these cells. Transcripts encoding Ryr1 were not found in contrast to Ryr2 and Ryr3. To study the contribution of NAADP signaling to glutamate-evoked calcium transients in murine hippocampal neurons we used the NAADP antagonists Ned-19 (Naylor et al., 2009) and BZ194 (Dammermann et al., 2009). Our results show that both NAADP antagonists significantly reduce glutamate-evoked calcium transients. In addition to extracellular glutamate application, we studied synchronized calcium oscillations in the cells of the neuronal cultures evoked by addition of the GABAA receptor antagonist bicuculline. Pretreatment with Ned-19 (50 µM) or BZ194 (100 µM) led to an increase in the frequency of bicuculline-induced calcium oscillations at the cost of calcium transient amplitudes. Interestingly, Ned-19 triggered a rise in intracellular calcium concentrations 25 min after bicuculline stimulation, leading to the question whether NAADP acts as a neuroprotective messenger in hippocampal neurons. Taken together, our results are in agreement with the concept that NAADP signaling significantly contributes to glutamate evoked Ca2+ rise in hippocampal neurons and to the amplitude and frequency of synchronized Ca2+ oscillations triggered by spontaneous glutamate release events.

6.
J Mol Cell Cardiol ; 141: 30-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32173353

RESUMO

Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coração/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Tamanho Celular , Eletrocardiografia , Técnicas de Silenciamento de Genes , Testes de Função Cardíaca , Homeostase , Humanos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos
7.
Hippocampus ; 29(11): 1038-1048, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31002217

RESUMO

Adaptive behavior requires the transient storage of information beyond the physical presence of external stimuli. This short-lasting form of memory involves sustained ("persistent") neuronal firing which may be generated by cell-autonomous biophysical properties of neurons or/and neural circuit dynamics. A number of studies from brain slices reports intrinsically generated persistent firing in cortical excitatory neurons following suprathreshold depolarization by intracellular current injection. In layer V (LV) neurons of the medial entorhinal cortex (mEC) persistent firing depends on the activation of cholinergic muscarinic receptors and is mediated by a calcium-activated nonselective cation current (ICAN ). The molecular identity of this conductance remains, however, unknown. Recently, it has been suggested that the underlying ion channels belong to the canonical transient receptor potential (TRPC) channel family and include heterotetramers of TRPC1/5, TRPC1/4, and/or TRPC1/4/5 channels. While this suggestion was based on pharmacological experiments and on effects of TRP-interacting peptides, an unambiguous proof based on TRPC channel-depleted animals is pending. Here, we used two different lines of TRPC channel knockout mice, either lacking TRPC1-, TRPC4-, and TRPC5-containing channels or lacking all seven members of the TRPC family. We report unchanged persistent activity in mEC LV neurons in these animals, ruling out that muscarinic-dependent persistent activity depends on TRPC channels.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Córtex Entorrinal/citologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos
8.
J Endovasc Ther ; 26(2): 181-190, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30741067

RESUMO

PURPOSE: To report the 1-year outcomes of a single-center, all-comers registry aimed to assess effectiveness and safety of endovascular revascularization for atherosclerotic erectile dysfunction (ED) in an unselected patient cohort. MATERIALS AND METHODS: Between April 2016 and October 2017, 50 consecutive patients (mean age 59.6±10.3 years) underwent endovascular revascularization for ED owing to >50% stenosis in 82 erection-related arteries. Patients were treated by means of standard balloon angioplasty (16%), drug-coated balloon angioplasty (27%), or drug-eluting stent (55%) implantation. The primary feasibility outcome measure was the incidence of a minimum clinically relevant improvement of ≥4 in the 6-question International Index of Erectile Function Questionnaire (IIEF-6) score at 12 months. Clinical effectiveness was improvement in erectile function as quantified in the mean difference (MD) of the IIEF-15 score at 3 and 12 months as well as the mean changes in IIEF-15 questions 3 and 4. RESULTS: Procedure success was achieved in 49 (98%) of 50 patients. At 12 months, 30 (65%) of 46 patients achieved a minimum clinically relevant improvement in the IIEF-6 score. The overall IIEF-15 score, as well as scores for questions 3 and 4, improved in 32 (65%) of 49 patients, 28 (57%) of 49 patients, and 29 (60%) of 48 patients, respectively. Change in the overall IIEF-15 score at 12 months was consistent among subgroups, except for elderly patients [MD -5.0 (95% CI -9.7 to -0.2), p=0.041] and those with hypertension [MD -11.0 (95% CI -20.5 to -1.5), p=0.025], who showed less improvement. CONCLUSION: Endovascular revascularization was safe and efficacious in the majority of ED patients through 1 year.


Assuntos
Angioplastia com Balão , Impotência Vasculogênica/terapia , Ereção Peniana , Pênis/irrigação sanguínea , Doença Arterial Periférica/terapia , Idoso , Angioplastia com Balão/efeitos adversos , Angioplastia com Balão/instrumentação , Tomada de Decisão Clínica , Materiais Revestidos Biocompatíveis , Constrição Patológica , Stents Farmacológicos , Estudos de Viabilidade , Humanos , Impotência Vasculogênica/diagnóstico por imagem , Impotência Vasculogênica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Estudos Prospectivos , Recuperação de Função Fisiológica , Sistema de Registros , Fatores de Risco , Suíça , Fatores de Tempo , Resultado do Tratamento , Dispositivos de Acesso Vascular
9.
Cell Calcium ; 78: 66-75, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30658323

RESUMO

Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn't evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Aldeído Pirúvico/farmacologia , Animais , Células Cultivadas , Camundongos
10.
Mol Metab ; 18: 143-152, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287091

RESUMO

OBJECTIVES: The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS: CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS: Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS: These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Aldeído Pirúvico/metabolismo , Idoso , Aldo-Ceto Redutases/metabolismo , Animais , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Rim/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
11.
Cell Calcium ; 71: 24-33, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604961

RESUMO

All three members of the Orai family of cation channels-Orai1, Orai2 and Orai3-are integral membrane proteins that can form store-operated Ca2+ channels resembling endogenous calcium release-activated channels (CRAC) in many aspects. Loss of function studies in human and murine models revealed many functions of Orai1 proteins not only for Ca2+ homeostasis, but also for cellular and systemic functions in many cell types. By contrast, the knowledge regarding the contribution of Orai2 and Orai3 proteins in these processes is sparse. In this study, we report the generation of mouse models with targeted inactivation of the Orai2 gene to study Orai2 function in peritoneal mast cells (PMC), a classical cell model for CRAC channels and Ca2+-dependent exocytosis of inflammatory mediators. We show that the Ca2+ rise triggered by agonists acting on high-affinity Fc receptors for IgE or on MAS-related G protein-coupled receptors is significantly increased in Orai2-deficient mast cells. Ca2+ entry triggered by depletion of intracellular stores (SOCE) is also increased in Orai2-/- PMCs at high (2mM) extracellular Ca2+ concentration, whereas SOCE is largely reduced upon re-addtion of lower (0.1mM) Ca2+ concentration. Likewise, the density of CRAC currents, Ca2+-dependent mast cell degranulation, and mast cell-mediated anaphylaxis are intensified in Orai2-deficient mice. These results show that the presence of Orai2 proteins limits receptor-evoked Ca2+ transients, store-operated Ca2+ entry (SOCE) as well as degranulation of murine peritoneal mast cells but also raise the idea that Orai2 proteins contribute to Ca2+ entry in connective tissue type mast cells in discrete operation modes depending on the availability of calcium ions in the extracellular space.


Assuntos
Anafilaxia/metabolismo , Cálcio/metabolismo , Degranulação Celular , Deleção de Genes , Ativação do Canal Iônico , Mastócitos/fisiologia , Proteína ORAI2/genética , Alelos , Animais , Proteínas de Bactérias/metabolismo , Sinalização do Cálcio , Separação Celular , Espaço Extracelular/metabolismo , Marcação de Genes , Genes Reporter , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Receptores de IgE
12.
Mol Metab ; 9: 156-167, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29373286

RESUMO

OBJECTIVE: Diabetic retinopathy (DR) is induced by an accumulation of reactive metabolites such as ROS, RNS, and RCS species, which were reported to modulate the activity of cation channels of the TRPC family. In this study, we use Trpc1/4/5/6-/- compound knockout mice to analyze the contribution of these TRPC proteins to diabetic retinopathy. METHODS: We used Nanostring- and qPCR-based analysis to determine mRNA levels of TRPC channels in control and diabetic retinae and retinal cell types. Chronic hyperglycemia was induced by Streptozotocin (STZ) treatment. To assess the development of diabetic retinopathy, vasoregression, pericyte loss, and thickness of individual retinal layers were analyzed. Plasma and cellular methylglyoxal (MG) levels, as well as Glyoxalase 1 (GLO1) enzyme activity and protein expression, were measured in WT and Trpc1/4/5/6-/- cells or tissues. MG-evoked toxicity in cells of both genotypes was compared by MTT assay. RESULTS: We find that Trpc1/4/5/6-/- mice are protected from hyperglycemia-evoked vasoregression determined by the formation of acellular capillaries and pericyte drop-out. In addition, Trpc1/4/5/6-/- mice are resistant to the STZ-induced reduction in retinal layer thickness. The RCS metabolite methylglyoxal, which represents a key mediator for the development of diabetic retinopathy, was significantly reduced in plasma and red blood cells (RBCs) of STZ-treated Trpc1/4/5/6-/- mice compared to controls. GLO1 is the major MG detoxifying enzyme, and its activity and protein expression were significantly elevated in Trpc1/4/5/6-deficient cells, which led to significantly increased resistance to MG toxicity. GLO1 activity was also increased in retinal extracts from Trpc1/4/5/6-/- mice. The TRPCs investigated here are expressed at different levels in endothelial and glial cells of the retina. CONCLUSION: The protective phenotype in diabetic retinopathy observed in Trpc1/4/5/6-/- mice is suggestive of a predominant action of TRPCs in Müller cells and microglia because of their central position in the retention of a proper homoeostasis of the neurovascular unit.


Assuntos
Retinopatia Diabética/metabolismo , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Canais de Cátion TRPC/genética , Animais , Células Cultivadas , Retinopatia Diabética/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aldeído Pirúvico/sangue , Retina/metabolismo , Canais de Cátion TRPC/metabolismo
13.
J Biol Chem ; 292(8): 3224-3238, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-27956549

RESUMO

The glyoxalase system is a highly specific enzyme system existing in all mammalian cells that is responsible for the detoxification of dicarbonyl species, primarily methylglyoxal (MG). It has been implicated to play an essential role in preventing the increased formation of advanced glycation end products under certain pathological conditions. We have established the first glyoxalase 1 knock-out model (GLO1-/-) in mammalian Schwann cells using the CRISPR/Cas9 technique to investigate compensatory mechanisms. Neither elevated concentrations of MG nor associated protein modifications were observed in GLO1-/- cells. Alternative detoxification of MG in GLO1-/- is achieved by increased catalytic efficiency of aldose reductase toward hemithioacetal (product of glutathione and MG), which is most likely caused by S-nitrosylation of aldose reductase. The hemithioacetal is mainly converted into lactaldehyde, which is paralleled by a loss of reduced glutathione. Inhibition of aldose reductase in GLO1-/- cells is associated with an increased sensitivity against MG, elevated intracellular MG levels, associated modifications, as well as increased oxidative stress. Our data suggest that aldose reductase can compensate for the loss of GLO1. This might be of clinical importance within the context of neuronal diseases caused by an impaired glyoxalase system and elevated levels of dicarbonyl species, such as MG.


Assuntos
Aldeído Redutase/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Células de Schwann/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Técnicas de Inativação de Genes , Lactoilglutationa Liase/genética , Camundongos , Estresse Oxidativo , Células de Schwann/citologia
15.
Cancer Cell ; 24(1): 130-7, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23810565

RESUMO

Tumor cells can activate platelets, which in turn facilitate tumor cell survival and dissemination. The exact mechanisms by which platelets promote metastasis have remained unclear. Here, we show that adenine nucleotides released from tumor cell-activated platelets induce opening of the endothelial barrier to allow transendothelial migration of tumor cells and thereby promote cancer cell extravasation. We identified the endothelial P2Y2 receptor, which is activated by ATP, as the primary mediator of this effect. Mice deficient in P2Y2 or lacking ATP secretion from platelets show strongly reduced tumor cell metastasis. These findings demonstrate a mechanism by which platelets promote cancer cell metastasis and suggest the P2Y2 receptor and its endothelial downstream signaling mechanisms as a target for antimetastatic therapies.


Assuntos
Trifosfato de Adenosina/fisiologia , Plaquetas/fisiologia , Movimento Celular , Células Endoteliais/fisiologia , Metástase Neoplásica , Neoplasias/patologia , Receptores Purinérgicos P2Y2/fisiologia , Animais , Grânulos Citoplasmáticos/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...